Wednesday, December 5, 2012

What do they mean by Output Power Derating?

All power supplies have a specified “Operating Temperature Range”. For example, Lambda’s AC-DC switchmode SWS600L series of 600 watt, single output power supplies have an operating temperature range from “-20°C to +74°C”. However, the spec also states: “…derating linearly to 50% load above 50°C”. What does this mean?

Please refer to Figure 1 below. Most power supply manufacturers provide this type of curve to make it easier for the end user to determine the maximum output power that can provided by a power supply at various operating or ambient temperatures. Ta = Temperature of the Ambient Air, or, the temperature of the air surrounding the power supply, especially the air at the intake of a fan-cooled supply. By comparing the “Operating Temperature Range” specification listed above to the derating curve, the following information can be seen:
  • The supply can deliver 100% of its rated output power load (600 watts) from -20°C to +50°C ambient temperatures
  • Above 50°C ambient, the supply can deliver a reduced amount of power
  • At 60°C ambient, the supply can provide about 80% of its max. rated power (0.80 x 600 = 480 watts)
  • At 74°C ambient, the supply can provide 50% of its max. rated power load (0.50 x 600 = 300 watts)


Figure 1: SWS600L Output Power Derating Curve

In addition to the supply’s normal “operating temperature range” and output derating-curve, some supplies like this one, have a specified low-temperature “start-up” capability (i.e., -40°C). This means that the supply can “start-up” or be “turned-on” with an ambient temperature as low as -40°C (below the -20°C spec) and deliver 100% of its rated power, however, the supply’s output regulation, hold-up time, ripple & noise, and other specifications cannot be fully guaranteed until the supply warms up to at least -20°C. This cold temperature start-up is a nice feature to have, especially for outdoor-mounted applications. Once the supply is turned-on it will usually self-heat due to the heat generated by its internal electronic power components.
read more "What do they mean by Output Power Derating?"

Monday, November 26, 2012

What are the differences between Conduction, Convection and Radiant Cooling of Power Devices?

All power devices generate heat. This is due to the unavoidable internal losses of all power circuits due to their inefficiencies. The higher the efficiency rating of the power device, the less internal heat is generated within it. If we could achieve 100% efficiency, there would be no heat generated within the power device and no cooling required.

There are three methods of transferring or removing heat from power devices: These are conduction, convection and radiant. In all cases, the heat is being transferred from the power device to another medium that is at a lower temperature. Heat is constantly seeking to move to any object or medium that is cooler.


Conduction Cooling: This is defined as the transfer of heat from one hot part to another cooler part by direct contact. For example, many DC-DC converters have a flat surface that is designed to mount directly to an external heat sink or cold plate that will conduct the heat away from the power device by direct contact, thereby cooling it. Conduction is the most widely used method of heat transfer. All power supplies use internal heatsinks to help conduct the heat away from the hot devices.


Convection Cooling: This involves the transfer of heat from a power device by the action of the natural air flow (a low density fluid) surrounding and contacting the device. Many power devices are rated for natural convection cooling as long as the air surrounding the unit remains within a limited temperature range that is cooler than the device. The advantage of this method of cooling is that no electromechanical fans are required.

Another type of convection cooling requires forced-air-flow via fans or blowers across the power device. Many power supplies come with a build-in fan to provide this forced air type of convection cooling. Other types of power supplies specify the amount of air flow that must pass through or around the device (in cubic-feet-per-minute) in order for the supply to provide its maximum rated output power.

Some power devices with heat sinks depend on convection cooling (with or without forced air) to assist in transferring the heat away from the power devices to the cooler air.

Radiant Cooling: This is the transfer of heat by means of electromagnetic radiation (energy waves) that flow from a hot object (power device) to a cooler object. True radiant heat transfer can take place in a vacuum and does not require air. It should be noted that conduction cooled power devices also give off radiant heat; however, radiant heat transfer is less effective as a means to cool a power device than are conduction or convection cooling described above.
read more "What are the differences between Conduction, Convection and Radiant Cooling of Power Devices?"

Thursday, November 22, 2012

California RoHS law

OK, so you might think you are not selling your products in Europe and you don't have to worry about RoHS. Nah!
Beginning in January 1, 2007, a California law will ban the sale of some electronic devices if they are prohibited from sale in the EU because they contain certain toxic metals.
At present CA’s RoHS law will be similar to EU RoHS Directive, but narrower in the scope of affected products and the number of restricted metals.
Here are some highlights of the CA's RoHS law:
  • It applies only to so called “covered electronic devices,” which are defined as video displays with >4" screen (such as CRTs, CRT and LCD TVs, computer monitors, laptop displays, plasma televisions).
  • It does recognize all exemptions adopted by the EU.
  • It restricts only four out of six substances (Lead, Mercury, Cadmium, and Hexavalent chromium) and does not restrict the use of PBBs and PBDEs. However, the use of flame retardants such as PBDEs is already banned under California Health and Safety Code since June 1, 2006.

Complete info is available at California Department of Toxic Substances Control. Also, you may want to get RoHS, WEEE and China RoHS manual as well as China RoHS EFUP guidelines translation.

read more "California RoHS law"

Monday, November 5, 2012

Guide to EMC Standards for Power Supplies

Introduction:
EMC refers to ElectroMagnetic Compatibility. Electrical equipment that takes power from a distributed AC or DC source which is connected to other equipment, such as the AC mains in a building, has to have minimal influence on that source. It also has to have minimal influence on other equipment through electromagnetic radiation. A power converter which incorporates switching devices operating at high frequency needs to employ special means to keep the electromagnetic interference within internationally agreed upon limits. In general, electrical equipment has to operate in its environment with minimal disturbance to its environment. The limits to disturbances are defined by the international standards described below.

Types of Standards:
1) Generic Standards:
A top level standard for a type of equipment which encompasses specific basic standards in their references. The current relevant standard for power supplies is EN61204-3: 2000. This covers the EMC requirements for power supply units with DC output(s) of up to 200V, at power levels up to 30kW, and operating from AC or DC. source voltages of up to 600V. The EN refers to Euro Norm or European standard. Europe has led the field in establishing standards for EMC and many other areas which have been adopted worldwide, with some local deviations.

2) Basic Standards List:
The relevant basic standards called up in EN61204-3 are:
EN55022 and EN55011. Conducted and radiated electromagnetic interference emitted by the power supply. This is also known as CISPR22. The FCC has similar standards in the USA. There are two levels for the emission limits, Class A and Class B. Class B is normally required which puts a lower limit on allowed emissions.
EN61000-4-2. Immunity to electrostatic discharge.
EN61000-4-3. Immunity to radiated radio frequencies.
EN61000-4-4. Immunity to fast transient voltages on the input lines.
EN61000-4-5. Immunity to lightning surges on the input lines.
EN61000-4-6. Immunity to conducted radio frequencies.
EN61000-4-8. Immunity to power frequency magnetic fields.
EN61000-4-11. Immunity to damage from input line voltage reductions.
EN61000-3-2. Limits to the harmonic currents that can be taken from the input line.
EN61000-3-3. Limits to the voltage fluctuations that the power supply can cause to the line input voltage.

3) Performance Criteria:
In immunity testing, there are four classes by which passing or failure are assessed.
Class A. No loss of function or performance due to the testing.
Class B. Temporary loss of function or performance, self recoverable.
Class C. Loss of function or performance which needs intervention to restore.
Class D. Permanent loss of function or performance due to damage. This would always represent a failure.


Basic Emissions Standards

EN55022 (IT equipment), EN55011 (Industrial equipment), and FCC Class A or B (in the USA):
Conducted and radiated emission limits.
Conducted EMI (electromagnetic interference) is radio frequency energy that the power supply couples into the input power lines. The power supply input incorporates filtering to reduce the conducted emissions as necessary. The radio frequency noise is measured between 150kHz and 30 MHz using a spectrum analyzer or special receiver.

Radiated EMI is radio frequency energy emitted from the enclosure and input and output wiring of the power supply and is measured in the 30MHz to 1,000MHz frequency range. The measurement is usually performed at an “open” site which is an open air location selected to be in a radio frequency quiet zone where television and radio transmissions are weaker. The unit to be tested is placed on a wooden table above a large ground plane 10 meters away from a suitable receiving antenna connected to a spectrum analyzer.

EN61000-3-2
Puts limits on the harmonic currents that the power supply is allowed to take from the AC mains source. The standard applies to power supplies with rated power between 75W and input line current of up to 16 amps per phase.

A power supply which is not power factor corrected will take a current from the source which is not the same shape as the voltage waveform. This is because the input storage capacitors can only charge when the input voltage is higher than the capacitor voltage. Thus the input current flows for only part of the cycle, and has a high peak value which causes currents which are harmonics of the line frequency. With three phase power distribution the absence of harmonic currents ensures that the neutral current is zero. This was not the case when large numbers of personal computers without power factor correction began to be used in office buildings, and the neutral wire would burn out. Most power supplies now incorporate power factor correction circuitry to ensure that the harmonic currents are low.

EN6100-3-3
Limits voltage changes that the unit under test can impose upon the input power source. This is referred to as the flicker test.

Although this is not normally a problem with power supplies, some types of electrical equipment, especially in process control, can load the power source at regular or semi-random intervals. This can cause voltage changes that can affect the brightness of electric lighting and cause flicker. A survey was performed to determine what rates of flicker were the most disturbing to human subjects, and a curve of maximum percentage voltage variation at various frequencies was established. The most disturbing rate was just over 1,000 changes per minute, and the curve reflects the smallest percentage change at this frequency. Above 1,800 changes per minute the flicker is not noticed.

Basic Immunity Standards

EN61000-4-2
Tests immunity to electrostatic discharge from a simulated human body capacitance of 150pF. By walking across a carpet of artificial fiber in a low humidity condition, a person can build up a charge of several thousand volts. This can be discharged to electrical/electronic equipment, and so it is important that the equipment is immune to these discharges. The test is performed at a voltage of up to 8kV by discharging a probe to the chassis at various locations by direct contact, and at up to 15kV through the air, with the power supply operating. Test levels of 4kV and 8kV are common. Class B performance criterion applies.

EN61000-4-3
Checks immunity to incident radio frequency energy in the frequency range of 80MHz to 1,000MHz, and a separate test at 800 MHz to 960MHz to simulate the effect of digital cellular telephone transmissions. The test is performed in an anechoic chamber which is a shielded room with cone shaped plastic moldings on the inside wall surfaces which absorb radio frequency energy, so there are no echoes. The field strength is 10V/m for the carrier. Class A performance criterion applies.

EN61000-4-4
Tests the effect of a fast voltage transient or burst applied between each input line and ground in turn. The applied voltage has a peak level of 2kV, and rises to maximum in 5 nanoseconds, and falls back to zero in 50 nanoseconds. It is applied at a repetition rate of 5kHz. Class B performance criterion applies.

EN61000-4-5
Simulates the effect of a lightning surge voltage applied to the input power lines. Surge voltages are applied between each line and ground, and also between lines. The line to ground peak voltage is normally twice that applied from line to line. 4kV and 2kV are typical test voltages. The voltage has a rise time of 1.2 microseconds, and a fall time of 50 microseconds. Class B performance criterion applies.

EN61000-4-6
Tests the effect of conducted radio frequency energy which is inductively coupled into the input cables with a ground return. The frequency range is 150kHz to 80MHz at 10Vrms amplitude, and the frequency is increased in 1% steps. The carrier is 80% amplitude modulated at 1 kHz. Class A performance criterion applies.

EN61000-4-8
Electromagnetic compatibility, testing and measurement techniques for power frequency magnetic fields. Criterion A, using Helmholtz coil at 50 Hz, to 30 amps (rms) per meter.

EN6100-4-11
Checks the effect of input voltage dips on A.C. input power supplies only.
There are three different degrees of test severity, a 30% reduction of input voltage for 0.5 period, a 60% reduction for 5 periods and a 95% reduction for 250 periods. For the first test, the unit should continue working with no change of output voltage because most units have a hold-up time of one period, which corresponds to 20 milliseconds at 50Hz. The other two tests will cause reduction or loss of output voltage, and intervention may be needed to restore the output. The unit should not be damaged by the testing. Class B and C performance criteria apply.
read more "Guide to EMC Standards for Power Supplies"

Friday, October 26, 2012

Isolated & Non-Isolated DC-DC Converters

There are two frequently used terms for types of DC-DC converters; non-isolated and isolated. This “isolation” refers to the existence of an electrical barrier between the input and output of the DC-DC converter.

The simplest example of a non isolated “converter” is the popular LM317 three terminal linear regulator. One terminal for unregulated input, one for the regulated output and one for the common.

Source National Semiconductor

Note there is no isolation between the input and output.

Today, non-isolated switching regulators are very common, or Point of Load (POL) converters.

Although low cost and simple, these converters suffer from one disadvantage in that there is an electrical connection between the input and output. Many safety agency bodies and/or customers require a separation from the applied input voltage and the output voltage which is often user accessible.

An isolated DC-DC converter will have a high frequency transformer providing that barrier. This barrier can withstand anything from a few hundred volts to several thousand volts, as is required for medical application.

A second advantage of an isolated converter is that the output can be configured to be either positive or negative.

Where many users get confused concerns how to connect the input up, particularly with the differences between a datacom system (input negative connected to chassis) and a telecom system (input positive connected to chassis).

Below are four scenarios, be aware - figures 3 & 4 will result in failed converters! Most DC-DC converters cannot withstand reversed input connections.

read more "Isolated & Non-Isolated DC-DC Converters"

Monday, October 8, 2012

Why is my power supply input only rated from 100-240VAC?

Most power supplies have a rating label that looks something like this:


However, a close look at the power supply’s datasheet will usually show the absolute AC input voltage range, from minimum to maximum. This is usually 90-264VAC, or occasionally 85-264VAC if the power supply has been designed for Japanese use.

Japan uses the lowest AC mains voltage, which is 100VAC nominal; however, short duration AC line droops or brown-out conditions often mandate a rating down to 85VAC. The UK is among the countries that use the highest AC mains, with a nominal rating of 240VAC.

The safety certification bodies (UL, CSA, TUV, etc.) mandate that a rating of 100-240VAC be listed on the power supply’s label. However, they factor in a +/-10% tolerance for the power generation and transmission utilities. -10% of 100VAC is 90VAC, and +10% of 240VAC is 264VAC. All safety testing is performed at the high and low limits as listed on the power supply’s datasheet.

So, if the power supply label states 100-240VAC, it can usually operate over a wider AC operating input range. However, always check with the manufacturer’s datasheet to confirm this. Continuous operation of the power supply over the datasheet’s specified AC input range will not normally cause any problems. In some cases, however, the maximum output power (total watts) of the power supply may need to be derated if the supply is operating off an input voltage that is on the low-end of the specified range. Always check the power supply’s datasheet for the specified minimum AC input voltage with various output load levels. Deratings may also apply depending upon the power supply’s operating ambient temperatures.

Should a label state 100/240VAC (note the slash) it “may” indicate that there is a voltage select switch or jumper that is required to be set for the correct operating input voltage range. Newer products tend to not have an AC select switch or jumper.

Worldwide, the AC mains power has a nominal frequency of either 50 or 60 Hz (cycles per second). However, these frequencies are subject to variations by the power generators in different countries (especially third world) and so the typical AC frequency range for power supplies is 47-63Hz.
read more "Why is my power supply input only rated from 100-240VAC?"

Tuesday, September 18, 2012

A “Beginner’s Guide” to Fault Tolerant Power Supplies

The effectiveness of having a fault tolerant power strategy was demonstrated after hurricane Katrina hit the Gulf Coast in 2005. A financial news television station interviewed the heads of two telecom carriers to find out when their telephone services would be operational again. The interview was very short – “we never lost service” they replied.

The telephone systems we take for granted have expensive and complex back up systems. Fault tolerant power supplies are supported by battery banks, generators and uninterruptible power supplies. Large Industrial complexes have also implemented similar systems - having an oil refinery stop production can result in enormous sums of money being lost!

For those with less extensive budgets, this brief article will explain the benefits, terminology and tips on how to implement a relatively low cost, but effective system.

Why have redundant power supplies?
Imagine a 24VDC 10A power supply driving motors and sensors on a conveyor based production line. For two or three years everything works fine, then one Friday (always at the end of the month), the power supply fails causing the conveyor to stop. Even if a spare part is in stock, it could still result in 30 minutes of expensive lost production.

If two identical power supplies had been installed in a fault tolerant, redundant mode, the remaining (good) unit would have continued to power the production line. The failed power supply could then be replaced at a more convenient time during routine maintenance.

Frequently Used Terminology

N+1
An expression where N is the number of power supplies needed to run the system. The simple two power supply system mentioned above would be considered 1+1. A triple redundant system (where two failures would have to occur to shut the system down) would be designated 1+2.

Hot-swap
Some equipment is operated 24 hours a day, 7 days a week, allowing no time to bring the system down for maintenance. In this case the failed power supply must be “swapped” out and a new one inserted without disruption to equipment operation.

ORing diodes
In the rare event of a power supply failing with a shorted output, low voltage-drop ORing diodes block that short from bringing down the system power.

Current share
Some power systems employ a method of balancing the current between the power supplies to increase field life. This can be an electronic signal wire that links the power supplies together or a switch* on the power supply that initiates a slight drop in the output voltage as more current is drawn. (*Common on high power DIN rail units)

Two Ways of Implementing Fault Tolerance

DIN Rail mount
For the example listed above, the simplest off-the-shelf solution is to use a diode “ORing” module and two power supplies. Here we are using Lambda’s DIN rail mount DLP-PU module and two 24V 10A DLP240-24-1/E power supplies.


Tip: When wiring the system, ensure that the cable lengths from the output of the power supplies to the ORing module are equal. This will help optimize the performance and life of the power supplies.
Inside the diode ORing module are two diodes and two alarm relays. Even in the event of one power supply failing with an internal short circuit, the remaining unit will continue to deliver power. See below.


Tip: - It is important to identify power supply failure using the relay alarms to flag the need for maintenance. Engineers sometimes overlook this which can result in a second failure unexpectedly bringing the system down!

Rack Mount
System Engineers requiring more power are turning to the communications style racks. These sophisticated low cost systems allow power supplies to be hot-swapped and come completely self contained. An example of such a product is Lambda’s FPS series.
Advantages of this solution include:
  • Easy mounting into a standard 19” rack
  • All in one solution
  • Hotswap capable (ORing diodes or MOSFET switches built-in)
  • No tools are required for replacement of a supply
  • High density, low profile (1.75”)
  • Off the shelf parts
  • Fully safety approved
  • All necessary warning signals included
  • 12V, 24V, 32-36V and 48V outputs

Click on http://www.lambdapower.com/products/fps-series.htm for an animated example.

Finally, one important note
A company wanted to ensure that in the event of a power supply failure their system would continue to operate. A battery was installed across the power supply output to give 24 hours uptime in the event of a power supply failure.

Unfortunately no thought was given to how anyone would know that the system needed maintenance! The power supply did eventually fail and the battery kept the system up for 24 hours before it discharged resulting in a system shutdown. A simple alarm circuit could have prevented that.

If you take Lambda’s recommendation to invest a little extra money up front to make your power system more secure, test your system to make sure you have it right!
read more "A “Beginner’s Guide” to Fault Tolerant Power Supplies"